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ABSTRACT ' Lﬂ' [ — i &
¥
Based on well-known results for linear systems, an alternate treatment of the bTIC z
pseudo-linearization problem of Reboulet and Champetier is given. Sufficient cory o
conditions for pseudo-linearization are obtained in the general case, and these INSPECTED W
are shown to be satisfied under mild hypotheses by systems with one or two s Py
inputs. Advantages of the new approach include the simplicity of the deriva-
tion, and a more explicit representation for a pseudo-linearizing transforma- i
tion. 2~
v
¥
e
Introduction e
ol
Pseudo-linearization of a nonlinear system involves computing a state feedback law and ]
state variable change such that the closed-loop system described in terms of the new variables ;‘. ,
~3
has a family of linearizations that is independent of the closed-loop constant operating point. o
)
This notion was introduced by Reboulet and Champetier, and has been treated from a -
differential-geometric viewpoint in a sequence of recent papers, [1-3]. We describe here an N
approach to pseudo-linearization based on the linearization family of the nonlinear system, N,
3 !
using a linear transformation due to Luenberger [4], a linear feedback law due to Ackermann ‘,;
Research sponsored by the Air Force Office of Scientific Research, Air Force Systems Command, .
USAF, under Grant Number AFOSR-87-0101. <
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[5], and resuits on linearization families in [6, 7). This leads to an alternate derivation of the
results in [1, 2] for one- and two-input systems, though in the general multi-input case only a
sufficient condition is obtained. In the course of the derivation, explicit representations are

obtained for a feedback law and a variable change that accomplish pseudo-linearization.

We adopt a local viewpoint, though when particular examples are considered the prob-
lem often can be solved in a nonlocal fashion. For simplicity, all functions and their derivatives

that appear in the seque] are assumed to be continuous. -

Multi-input nonlinear systems of the form
() = f (), u(®), x()ER", u(t)eR™, £20 (1)

will be considered. It is assumed that (1) has a constant operating point family
{[x(a), u(a)], a €T}, where I' is an open neighborhood of 0,€ R™ and, for convenience,
x(0) = 0, u(0) = 0. That is, a constant input « (¢) = u(a,) for all ¢ > 0, where oy €T is fixed,
and initial condition x(c;) yield the constant response x () = x(ay). Typically the constant
operating point family is parameterized by constant values of the input components and/or
state components. We implicitly permit the shrinking of T in order to economically state local
results.

Linearizing (1) about its constant operating point family yields the parameterized linear-
ization family

ad;k(f) -x(e)] = F(a)k(t) -x(a)] + G(a)[u(t) -u(a)], a€T (2
It will be assumed that for each €T,
rank G(a) = m, rank %(a) =m

rank [G (o) F(e)G(a) -+ F"Y(a)G(a)] =n 3)

Finally we assume that the controllability indices, denoted by k,, . . ., k,,, are constant for all

ael.

It should become clear that the assumptions of controllability and constant controllabil-
ity indices are required for the pseudo-linearization problem to be well posed. The rank
assumption on the operating point state is automatically satisfied if the constant operating

point family is parameterized by constant values of state components, and in any case is
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needed to insure that knowledge of x(a) determines a Also, for use in the sequel, we note
that [6]

F(a)%(a) + G(a)%(a) =0, forallael )

Pseudo-Linearization

The pseudo-linearization problem for (1) involves finding an invertible state variable
change z(¢t) = P(x(¢)) and a feedback law u(t) = P,+1(x(2), w(t)), w(t)€R™, with
[6P, +1/3w](0, 0) nonsingular, such that the closed-loop system shown in Figure 1, when
linearized about its constant operating point family {[w(a), z(a)), €T}, has a constant-
parameter linearization family described in the Brunovsky canonical form. That is, the

closed-loop linearization family is required to take the form

d - -
2 20 -2(e)] = F2(t) - 2(e)] + Gw () -w(@)], €T )
where
01 00
F = block diagonal {Fy,...,F,}, Fj=[* " """ 1 1 |eRr"®
00 01
00 co
0
G = block diagonal {1, . ...,8m}, & = | |€R*™ (6)
0
1

More or less implicit in this problem statement is the need to determine w(e) and z(a)
in a2 manner consistent with the variable change and the requirement that (5) be a lineariza-
tion family for the closed-loop nonlinear system. Specifically, the closed-loop constant operat-
ing point family must satisfy

z(a) = P(x(a)), u(a) = P, ,1(x(a), w(a)), a€T )

and, for convenience, we will require P(0) = 0 and P, ,,(0, 0) = 0. Also, by the condition

analogous to (4) applied to the closed-loop linearization (5) we must have, for all a €T,
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2., ky,
ki 42, ..., kg,

y
kit +kya+2, ..., 1

wa) =0, z(a)=0,i= (8)

Differentiating the first condition in (7) and combining' with (8) gives the requirement (writ-

ing transposes to save space)

T T T T
[%(@] 0...0[82""1(0)] 0---0 --- [M(ai 0...0]

oa oo
OO ©®

To solve the pseudo-linearization problem, we first show how to choose K (a) ER™*,
invertible M (a) € R™™, and invertible Q (a) € R™? such that, for all « €T,

Q@[F () + G(@K(@IQ' @) =F, Q(a)G@M(@) =G (10)

Secondly, we will show how to compute P, ,,(x, w) such that, for all a €T,

0Py s
Pr1(x(@), W) = u(@), —"(x(2), w(@)) = K(a),
oP, n+l -
- (x(0), W(e)) = M(2) (1)

where w(a) = 0. Finally, we will determine conditions under which (9) can be satisfied with
[8P /ax)(x(«)) = Q(a), and show how to compute P (x) such that, for all a €T,

P(x(@) = 20), TL(x(@) = 0@ (12)

In order to specify in an explicit fashion the matrices Q («), K(a) and M (a) that satisfy
(10), we will make use of developments leading to the Luenberger controller form [4] and the
so-called minimum-time deadbeat control law for discrete-time systems due to Ackermann

[5]. Denoting the columns of G (a) by g,(a), . . . , gn(a), by hypothesis
C(e) = [g1(e) F(oga(@) -+ F*"(a)g1(e) ** gn(@) Fl@lgm(e) ~ F="gn(@)] (13)

is invertible at each a € I'. Partitioning C-!(a) by rows as

g m_ m_ e _a_ -

R g
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-
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we let

and

Cl(e) =

Q(a) =

- ey1(a) ‘
eu:,(a)

€m1 (a)

mi, (@) J

[ e, (a)

e, (2)F (a)
e, ()F (@)

Emk, ()
emi, ()F (a)

K(a) = -M(a)

| e (IF~" (@)

[ ¢4, (@F* () |

_emk.(a)r*"(a) J

. M@ =

¢ s, (@F(a) |

emk (@)F="(a) J

G(a)

(14)

(15)

(16)

The calculations to verify invertibility of Q (a) and M (a) and to show that (10) is satisfied are

standard, though tedious unless carried out for a particular case.

Now we need to show that the parameterized linear control law

u(t) -u(e) = K(a)lx(r) - x(a)] + M(a)[w(r) - w(a)]

(17

with w(a) = 0 is a feedback linearization family, that is, the linearization of some nonlinear
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feedback law of the form k (x, w) about the closed-loop operating point family. But this fol-
lows from Corollary 3.1 in [7], since

[ &4, (0)F" (@)
ox ow L N4 X
K@ @) + M@ (a) = - M(a) : )
O B emi ()F=(a) | % >
[ eu, (F* () | -
= -M(a) : F@) (o)
Emi, ()F=" ()
ew@F @ |
= M(0) . le@2@ :
emk(@)F =" (a)
du
- g | (18)

Indeed, an explicit representation for a nonlinear control law corresponding to (17) can be
found as follows. Select m components of x(a) to form x(a) such that rank [9x/3a](a) = m,
and denote by x the same selection of 7 components from x. Then a nonlinear feedback law

that satisfies (11) is [7]
Py(x w) = u(X () + K& @) - x& @) + M @)w (19)

Finally, we must consider conditions under which there exists z(a) such that (9) is
satisfied, where [P /&](x(a)) = Q(a) is specified in (15). It is straightforward to verify that
if k; > 2, then ey, (a)F/(a)ge(a) = Oforj =0, 1,..., ki-2,k=1,..., m Thus, fora€eT,

i (F! (@) X 0) = - 21, (WFI ()G (@) T2 (@)

=0, j=0,1,....k-2 (20)

Therefore (9) is satisfied if z)(a), 2, +1{a@), ..., Z, + ... + &, + 1(a) satisfy the following set

of m, uncoupled, total differential equations:

W
) = en,@E@, @) = en @R,

. AP ' - sl ‘
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(@) = emie () 22 () 21)
If z(a) is such that (9) is satisfied, then a nonlinear variable change that satisfies (12) is [6]
-1, -

P(x) = 2(8 @) + Q% @)l -x& (@) (22

where x and x are as in (19).

Writing the i** entry of a row vector / as [ ];, and invoking the standard existence condi-
tion for solutions to total differential equations [8] we obtain the following sufficient condition

for pseudo-linearization.

Theorem: Suppose we are given a nonlinear system (1) with linearization family (2) such that
(3) is satisfied, and the controllability indices are constant for €T, where I is a sufficiently-
small, open neighborhood of 0 € R™. Then the nonlinear system is pseudo-linearizable if for

all ¢eT,

3 x 1 =1
= o] - ok s -

Furthermore, if these conditions are satisfied, then a pseudo-linearizing transformation is
specified by (19) and (22).

For the case m = 1, it should be clear that (23) is vacuous, and thus pseudo-linearization
is always possible under our basic assumptions. Unfortunately, for sn > 1 the sufficient condi-
tion provided by this theorem is rather restrictive due to the specification of a particular K(a),
Q (@), and M () out of the many that satisfv (10). This can be relaxed somewhat by introduc-

ing integrating factors as follows. In place of (21), we consider

oz ax alkl+...+km_l..1 ax
S (@ = i@ (@5 (@ (@) = (@ (@) S (@) ()
where r{(a), . ..,rn(c) are arbitrary, continuous, real-valued functions that are nonzero for

a€eTl. These functions can be introduced by modifving the definitions of Q () and M ()

(while teaving K (a) fixed as in (16) ) according to

O(a) = block diugonul{r,(a)[k‘,dq Q=1 ---,m} - 0(a)

M) = M(a)-diagonal{ T(IJ i=1, m} (25)
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where Iy, is the k; x k; identity matrix. With Q () and M (a) replaced by O(a) and M(a),
(10) remains satisfied and (17) is a feedback linearization family for

Poaa( w) = (X () + K& @)l -x& E)] + ME (@)w (26)

e

where x and x are as before. Also, the equations that determine the nonzero components of
z(a) are precisely those in (24). Therefore, if ri(a), ..., m(a) can be found such that the

appropriate existence conditions for (24) are satisfied, then the nonlinear variable change A

P(x) =25 () + OG @)k - (X" )] 27)

together with (26) accomplish pseudo~linearizz;tion. Indeed, for the case m = 2 we will estab-

lish that such z(a) always exists. ‘

Pty

; Corollary: Suppose we are given a nonlinear system (1) with linearization family (2) such that

28

= 1 orm = 2, (3) is satisfied, and the controllability indices are constant for a €T, where T

is a sufficiently-small, open neighborhood of 0 € R™. Then the nonlinear system is pseudo- E:
linearizable by a transformation of the form specified in (26) and (27). b
~
Proof: For the casem = 1, we can take ri(a) = 1, and (24) becomes 3
dz :
@) = en@E @ (28) ]
.
With the initial condition z,(0) = 0, we have E
< dx ‘..
21(a) = [e1n(0) - (0) do (29) R
0 i .
:
and a pseudo-linearizing transformation can be constructed as in (26) and (27) (or
equivalently, (19) and (22)). In the case m = 2, the conditions for (24) become :
) -'
K 3 ax 3 x . -
gg[’i(a)ejk,(a)ja;(a)] = E[’j(a)ejk,(a)a(a)]v j=12 (30) A
Performing the indicated differentiations gives two, uncoupled, linear partial differential equa- :_
tions .
(a) (a) + b5 i/l (@) + ci(@)rj(a) =0, j=12 (31) :
K
I
O G T, Ay, R o, R s 7 G, 1, G R TR A L T R St
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whe;e
a(a) = ejk,(a)%(a), by(a) = -ejk,(a)%(a) :

x Bk, . 3x
o1

0 ()2 @y .
Gy 8y oy

Oa;

cj(@) = (@, j=12 (32)
Since [-bj(a) aj(@)],j = 1, 2, are rows 1 and k; +1 of (9), a simple rank argument shows
that a;(c) and bj(a) do not vanish simultaneously on I'. Thus (31) can be solved for any initial
condition r;(0), j = 1, 2. [9] This implies that there exist z,(a) and z, ,1(a) that satisfy (24),

and the proof is complete.

Conclusions

For systems with one or two inputs, our approach to pséudo-linearization appears to
have two main advantages over the original treatment in [1, 2]. These are the simplicity of the
derivation based on standard linear theory, and a more explicit representation for a pseudo-
linearizing transformation. The major disadvantage of the approach is that it is unclear if the

complete results in {2, 3] can be obtained for systems with more than two inputs.
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x = f(x,u) P(x) ——s

Pn +1(x’w)

Figure 1. Nonlinear system structure for pseudo-linearization.
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